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IDENTIFICATION OF PHYSICAL PROCESSES AND INVERSE PROBLEMS 

O. M. Alifanov UDC 536.24 

General procedures of parametric and structural identification are considered as 
are inverse problems as their methodological basis. 

The progress of physical processes ~In different media (gases, liquids, solids) can be 
assessed according to some external phenomena that are recorded by special devices. Relying 
on the results of observations (measurements) as well as on general physical laws and regu- 
larities, the process being studied can be compared to some mathematical model. The develop- 
ment and founding of the mathematical models are often called identification. 

A mathematical model (MM) as an abstract means of the approximate representation (map- 
ping) of a real process in order to investigate it is the mathematical description of sub- 
stantial factors of the process and its interconnections. A certain set of models, distin- 
guished particularly by the number of factors being taken into account and by the complete- 
ness and accuracy of description of the process, respectively, on the one hand and by the 
complexity of the model on the other, can ordinarily be compared to the identical process. 
One of the main requirements on a MM is the need to take account of all fundamental factors 
and interconnections of the process under consideration and the elimination of the secon- 
daries. The selection of a model is dictated primarily by the purpose of the investigation 
being performed, here the tendency is always ultimately to simplify the model so as to make 
its practical application possible and convenient. 

Therefore, the first step in the mathematical formulation of a problem in the general 
case is reasonable constructlon of the model structure, i.e., a qualitative description of 
the process under investigation by using some operators. This procedure is called structural 
identification. 

Differential operators most often comprise the basis of mathematical models of physical 
processes. Models with lumped parameters described by ordinary differential equations and 
models with distributed parameters described by partial differential equation are differen- 
tiated. 

The second step in the mathematicalform~lation of a problem is the "allotment" of the 
model of quantitative information, i.e., the determination (estimation) of the unknown char- 
acteristics (model parameters) in the structural MM. This stage is called parametric identi- 
fication. 

Structure and parametric identification of physical processes are closelyrelated to the 
solution of inverse problems for differential equations. The formulations of direct prob- 
lems, each of which can be compared with a certain set of inverse problems within the frame- 
work of the model being identified are assumed known in the formalization of the general for- 
mulations and extractions of the fundamental classes of inverse problems. Characteristic ex- 
amples of inverse problems are presented below. 

SYSTEMS WITH LUMPED PARAMETERS 

Let the process being investigated be characterized by n dependences of the scalar argu- 
ment t (variables of coordinates of the process): y(t) = [y1(t) ..... yn(t)] T, and in con- 
formity with a certain mathematical model this vector will satisfy a system of ordinary dif- 
ferential equations of the form 
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_ d y  = A ( t )y  + g (t), y (0) = O, 
dt 

where g ( t )  = [ g , ( t ) ,  . . . ,  g n ( t ) ]  T, and T i s  the symobl fo r  the t r a n s p o s e  

(i) 

A (t) -= 

- a~l ( t)  al~ ( t )  . . . aln ( t ) -  

a21 (t) a22 (l) . . . a2n (t) 

. , . . . . . . . . . .  

. . . . . . . . .  , , . 

_ a . a  (t)  a . 2  (t)  . a ~ .  (t) _ 

Unknown quantities are contained among the components of the vector g(t) and the matrix A(T), 
and they must be determined by means of the known vector z(t)=[Zm(f), ~(t) ..... zz(t)] ~, l~n, (from 
the measurement results) that is linearly related to the vector y(t):z(t) = C(t)y(t), where 
C(t) is a given matrix. 

This formulation of the inverse problem corresponds to identification of the vector equa- 
tion (i) with known initial data. A particular case is a problem with matrix A and vector g 
constant in time. 

The inverse problem formulation considered must be relied upon in many applications, par- 
ticularly in the investigation of the thermal regimes of engineering objects. If the method 
of partitioning the object into n isothermal elements is used and it is assumed that the heat- 
transfer process is realized by heat conduction and convection, then the heat balance equation 
written for each element will form the following system 

c~--dTh = ~ % n j ( T j - - T ~ ) - - k Q h ,  k = 1, n, r6(O, ~=], 
dr 

i=~ (2) 

Tk (O)=Ton,  k =  1 ,n ,  

where Tk(T) is the temperature of the k-th element, C k is its bulk specific heat, %kj are the 
heat transfer coefficients (thermal conductivities) between elements with numbers k and j, 
and Qk is the quantity of heat acting on the k-th element, and T is the time. 

The inverse problem for the system (2) consists of finding some causal characteristics 
Ck, %kj, Qk by means of certain information about the temperature state of the object. 

SYSTEM WITH DISTRIBUTED PARAMETERS 

As an illustration, let us consider the problem of heat conductivity in two solids, with 
different thermophysical characteristics that are in contact. Let the domains of the three- 
dimensional space E3(xOyz), occupied by these bodies be ~i and ~2 and their common boundary 
surface (the contact surface) $12. The external boundary surfaces of these bodies (the body 
surfaces with the exception of S,2) will be:~St and S=, respectively. We assume that a change 
in the geometric characteristics of the surface mentioned can occur with the lapse of time in 
the general case (for instance, because of material departure from the body surface, linear 
expansion, or thermal contractions). Lettthe time segment [0, Tm], T m < + = be considered. 

We write the heat-conduction equations in these bodies by assuming that heat sources of 
intensity QI and Q2, respectively, act within them: 

C t  OTI  ( P '  '~) - -  div [Xl grad T 1 (P, ~)] + Q1, P E ~1, r 6 (0, ~m]; 
0~ 

C2 a T 2 ( P ,  ~) = div[~gradT2(P ,  T)]-I-Q2, PEE~2, v6(0 ,  %n], 
0r 

where Tt and T2 are the temperature fields of the mentioned bodies, and Ci, %i are their bulk 
specific heats and heat-conduction coefficients (i = I, 2). 
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We append the initial temperature distribution 

T 1 (P, O) = ~t~l (P), P ~ ~"~1; T~ (P, O) = % (P), P 6 ~ ,  

and the adjoint conditions on the contact surface that take account of the equa!ity of the 
thermal flux densities and the temperature discontinuity of the first kind 

I = I < 
o r ,  . ( r ,  - r o  = 

On,---? s,, One, ~s,, 

to these equations. Here n,~ is the direction of the interior normal to St= and R is the 
thermal contact resistance. 

We can give as conditions on the external surface (s@Si, ~@(0, ~m], i=l, 2)" 

Boundary conditions of the first kind Ti(s,'~)=~i(s, ~); 

Of the second kind -- %~ 

normal to ths surface Si; 

OT~(s, "0 
On~ 

= f~ (s, T) , where n i is the direction of the interior 

Of the third kind _ %i OT~(s, ~) ==~(T i(s, ~) -- T* (~)), where ~i are convective heat-elimi- 
an~ 

nation coefficients between solids and the environment; T* is the temperature of the tempera- 
ture of the environment, or if we take hi ==Jhi, ~ = hiT*, OTi(s. T)/Oni+hiTi( s, x)=~i(s, ~); 

Boundary conditions taking account of heat transfer from the body to the environment by 
convection and radiation from its surface, as well as the thermal effect q*(T(s, r)) due to 
other physicochemical processes (melting, evaporation, atom recombination, etc.): 

_ _  ~ OT~ ( s ,  ~;) 4 = ~zi (Ti(s, "0- -  T* (z)) + %~T~ (s, "~) +q*, 
Oni 

where e i is the radiation coefficient of the surface S i and a is the Stefan--Boltzmann con- 
stant. 

The coefficients Ci, Xi, Qi, i = i, 2, as well as the quantities R, ~i, hi, ei, i = i, 
2, can be assumed constants, functions of the spatial coordinates x, y, z and (or) the time 
r, functions of the temperature, and in the general case, functions of the variables T, x, y, 
Z, Z .  

If any quantities from the set of causal characteristics {Ci, ~, Qi, ~, R, ~, [i, ~i, T*, 
hi, ~!, 8~}, t" = 1, 2, are unknown and they and the temperature field T(x, y, z, r) must be found 
in the domain -~i(~)UQ2(~) in a known time segment [0, Ym] by means of the known remainin~ 
causal characteristics and the additional conditions T(~dj,~) =[j(~), ] = I( m , where AdjI6~I 
,~-~s are neither fixed points or those that change position with the lapse of time, then we 
have an inverse problem for the heat-conduction equation. 

Let us choose the formulation of the inverse problem when quantities averaged over a 
certain volume vj 

- r Ix, u, z, a0.  

a r e  known r a t h e r  t h a n  v a l u e s  o f  t h e  t e m p e r a t u r e s  a t  t h e  p o i n t s  MI" Such  a c a s e  mus t  be  c o n -  
s i d e r e d  if it is impossible to consider the dimensions of the thermal sensors used to measure 
the temperature in the body as negligibly small. 

Let us also note that in certain cases (usually sufficiently scarce) the need may occur 
for averaging the measurements not only with respect to space but also with respect to time, 
i.e., the finiteness of the interval during which the value of the temperature is determined 
must be taken into account. 

1382 



Strictly speaking, it would be more correct to consider the formulation of the inverse 
problem with the inclusion of the measuring apparatus, the thermocouples, say, in the body 
since they cause distortion of the temperature field in a certain neighborhood of their place- 
ment. However, such problems are awkward and difficult to realize in computational respects. 
Consequently, the tendency is ordinarily to set up the experiment in such a manner as to eli- 
minate the distorting influence of the sensors from the considerations (for instance, to di- 
minish their dimensions maximally, to derive the thermocouple electrodes along isotherms, 
etc.) or to take this influence into account by inserting a correction into the measurement 
results. 

Inverse problems for other equations of parabolic, elliptic, and hyperbolic type, to 
which gasdynamics, heat and mass transfer, radiation transport, elasticity theory, quantum 
mechanics, etc., problems reduce, can also be formulated analogously. 

Remark. The inverse problem formulations are considered above as physical process iden- 
tification problems. Other formulations are also possible, among which inverse problems of 
the technical object design type and the systems control type should be extracted. 

In designing an object on the basis of the mathematical model taken the design charac- 
teristics entering into this model are selected by starting from the requisite technico- 
economic and exploitational indices. The desired characteristics are causal with respect to 
the quality indices of the object, i.e., the the design problem can be formulated as an in- 
verse problem. 

In the case of systems control (physical, mechanical, etco), the role of the causal char- 
acteristics is performed by the control actions (the input variables) whose change realizes 
some kind of control effect that is expressed in terms of the variable states of the system 
(output variables). Determination of the input in terms of the output variables can also be 
treated as an inverse problem of the control type. 

It must be noted that one distinction in principle exists between inverse problems of 
the identification type and inverse problems of the design or control type. Extension of 
the class of allowable solutions for the latter usually improves the situation since any tech- 
nically realizable solution assuring an extremum of the quality criterion with a given accu- 
racy must be found in these problems. At the same time, the broader the class of the possi- 
ble solutions for identification problems, the greater can the error be in determining the 
causal characteristics, which requires certain utilization of regular methods of solution. 

PARAMETRIC IDENTIFICATION 

We shall later understand the mathematical model of a certain physical process to be a 
set of equations and relationships characterizing this process, including the initial and 
boundary conditions for the differential equations. 

We assume that the structure of the MM of the process is given but certain model char- 
acteristics require quantitative definition, i.e., the parametric identification problem must 
be solved. Let us write it in operator form. We introduce the following notation: u is the 
desired quantity (a constant, vector, function, or vector-function), considered as an element 
of a certain normed space U; y is a variable state of the process that belongs to the normed 
space Y (for the MM described by partial differential equations of elliptic type, y is the 
function x = (x,, x2, ., Xp), x 6 ~, where ~ is the domain of spatial variables, therefore, 
in this case y = y(x, ui; if nonstationary problems described by parabolic or hyperbolic equa- 
tions are considered, then y = y(x, T, u), where T 6 (0, Tm) is the time variable), G is a 
given operator generated by the structural mathematical model taken for the process (G:U + Y); 
is connects the elements u and y: Gu = y, u 6 U, y @ Y; f is a known quantity (input data) 
considered as an element of the normed space F related to the variable state of the process 
by means of the operator B: f = By, B:Y ~ F. 

In an exact formulation, the inverse problem has the form 

Au=[ (3) 

with exactly assigned initial data A = BG and f. Here values of the variable state of the 
process at certain points of the domain of spatial variables under consideration are most of- 
ten taken as f. These points can be fixed or can change position with the lapse of time, 
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Fig. I. Block d iagramof parametric identification. 

A variational approach to the solution of the problem (3) is to minimize the functional 
7(u)=IIAu--~Ii~ in a certain set D ~ U, containing the exact solution u: inf](u),u~D. 

However, such a method of solving the parametric identification problem cannot possibly 
be applied directly because the problem (3) is usually unstable (the inverse operator A -I 
turnsout to be unbounded) and in practice just certain approximations A h and f6 are known 
instead of the exact data A and f. 

The inaccuracy in giving the initial data can be due, in particular, to the approximate 
quantitative description of the known causal characteristics in the operator A and to the 
presence of random and systematic errors in the right side of f. In addition the passage to 
approximate initial data is associated with the fact that an appropriate computational al- 
gorithm is constructed forlthe numerical solution of (3) in which the operator A is usually 
approximated by a certain finite-dimensional operator while the vector-functlons u and f are 
parametrized. 

Taking account of the remarks made, the identification problem is reduced to the deter- 
mination of a certain approximation in the given {Ah, f~} to the desired solution Uh~ = F A 
(A h, fb), which would assure all the better approximation to the exact solution of the prob- 
lem (3) in a certain sense, as the errors in giving the operator and the right side tend to 
zero. 

The parametric identification process is displayed schematically in the figure. Compar ~ 
ing the characteristic of the response f~ from the real object of investigation with the re- 
sults of solving the direct problem AhU for a given approximation to the quantity being vari- 
ated u permits making a conclusion about the correctness of"adjusting" the mathematical model 
for numerical values of the vector u, i.e., about the quantitative adequacy of the MM for the 
physical process. 

Inapplication to heat-conduction and heat-transfer processes in engineering systems, 
the computational model can be represented in the following abstract form: 

A~ [=wPC, To, ~ ,  r, T, g, x, ~1 = [8, (4) 
where,A h is  an operator  approximating the operator  A of the d i f f e r e n t i a l  model and giving the 
s t ruc ture  of the computational model,, i t  governs the r e l a t i onsh ip  between the thermophysical  
c h a r a c t e r i s t i c s  (given by using the vec tor  ~TPC), the i n i t i a l  temperature d i s t r i b u t i o n  (the 
vector  To), the geometric c h a r a c t e r i s t i c s  ~ condi t ions,  or t he i r  parameters F d i s c r e t i zed  by the 
temperature field T, the loading action g, andcertain information about the temperature field f. 

The vector f~ is ordinarily comprised of time series corresponding to the discrete rep- 
resentation of the temperature dependence on the time for the selected points of the space. 

In the formulation (4), some of the quantities from the numbers ~TPC, To, #, F are the de- 
sired characteristics. The process of selecting their approximations is organized in such a 
manner as to match the residu~l to the accuracy of the initial data, which is defined by the 
measurement errors, the recording and decoding of the experimental information, and also the 
errors in linearization and approximation in solving the problem. 

Let us note that in many cases the need to use results of measuring the temperature at 
a larger number of points than is required for a unique determination of the desired charac- 
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teristics occurs in the identification of the MM parameters. The passage to overdefined for- 
mulations of inverse problems ordinarily permits more confident data to be obtained. 

CRITERION FOR THE ADEQUACY OF THE MATHEMATICAL MODEL 

Assuming that sufficiently complete information can be obtained about the field of phys- 
ical quantities (for example, the temperature field) in the form of given f, we introduce a 
criterion for adequacy of the MM of the actual process 

= ~ (A) = sup inf IIAu--fllu, 
f ~ F o  u c U  

where Fo~_ F is a certain set of possible states of the process under investigation that 
should be described by the given >~. 

Since the state of the process is a result of some loading actions, these actions, ther- 
mal loads, say, are variated in such a manner in calculating D as to include the domain of 
possible utilization of the model being developed, which is characterized by the operator A. 

In practice, in place of n a certain approximation ~h8 is available which is calculated 
for inaccurately given A h and f~. However, in the majority of cases a "good" approximation 
can be obtained for the operator A and only the error in the experimental data is taken into 
account~ Then the decision about the degree of adequacy of the MM is made by starting from 

6 I " the quantity 8(N, max6f) in the inequality N~(A)~,8. Here t=~I[~--TIII~ is the error in giving 
feFo 

a certain realization f from Fo. 

The residual A={iAu--[oI]F can be taken as the distance between two elements in the func- 
tional space L=. Assuming that f is a n-dimensional vector function (n dependences on the 
spatial coordinates and the time), we write 

a = [z(x ,  ,~) - -  f~(x, ~)f [z (x, " O - - h ( x ,  *)] clf~d~} */= , '  
Of~ 

(5) 

where z(x, T) = Au is the "reaction" of;the model corresponding to a certain approximation 
tO U. 

If f is a scalar (for instance, one measurement was performed at each point of space at 
each time), the expression (5) takestthe form 

Tr~ 

0 fa 

In practice the case is extent when measurements are realized at individual points of 
space and the function f(x, T) cannot be restored with acceptable accuracy. Then the resid- 
ual is taken in the form 

0 

w h e r e  W = W ( z ,  f 6 ,  T)  i s  a w e i g h t  f u n c t i o n  w h o s e  s e l e c t i o n  i s  d e t e r m i n e d  b y  t h e  c o n d i t i o n s  
of conducting the experiment and the measurements. 

Residuals written in an uniform metric, A----max Iz--[6] , say, can also he used. 

STRUCTURAL IDENTIFICATION 

It is ordinarily assumed in solving structural identification problems that there is 
p~oP~ information about the process being investigated that permits postulation of some set 
of possible MM, and it is then necessary to solve the questions of whether the process "be- 
longs" to one of them on the basis of a determination of its most important singularities. 

Let us represent the "learning" MM of the process in the provisional operator-vector 
form 

A/~[cc~, [~h, ~n t, ~ ,  , rnk ~ (6) 
- . .  ~n , gk, xh, T ] = : / ~ ,  k - ~ O ,  1 . . . . .  1--:- 1, m n ,  
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where in the general case A k are nonlinear operators governing the correspondence between the 
vectors (vector-functions) of the known structural characteristics of the model ~k, the fields 
of the physical quantities ~ (=k,~k,g~;Xk,~)~ , the loading actions gk, and the initial data 
fk j which are certain information about the fields of the physical quantities, x k is the spa- 
tial variable in the coordinate system taken in the k-th iteration, x is the time, and m k is 
the number of physical quantities being considered in the k-th iteration. The subscript k 
denotes the number of the approximatio n to the desired operator A and the vector 8 for which 
acceptable adequacy of the MM to the physical process under investigation (a completely 
learned model) is observed. 

Therefore, in this formulation the structure of the operator is not determined to the 
end, it is unknown whether to include some terms in the model, to take into account the non- 
linearity, etc. All these indeterminacies are gradually exposed, i.e., the A k and 8k are 
formed from the condition of exposure of some qualitative features of the model in each ap- 
proximation to the desired MM. The strategy of successive refinement is often used. Initial- 
ly the simplest model is formulated from the number of predictables, and its adequacy to the 
process is verified within the limits of previously stipulated accuracy. If this condition 
is not satisfied the model is made complicated (for instance, the vector of the desired struc- 
tural singularities is extended) and its adequacy is again verified. And so on until the de- 
sired result has been obtained. Let us note that the iterative process of sorting the model 
is heuristic to a great extent. 

In many cases the structural identification includes parametric identification and can 
be realized in the following form. 

Let us assume there is a certain approximation to the structural features of the model 
characterized by the vector B I. For a given loading action g ~, z to which the fields 9~I 
]= I, ml, correspond, let experimental %nformation be obtained about these fields in the form 
of a certain vector quantity fi[,j=1, ml.. Usually this is continuous or discrete measure- 
ments in time at fixed or moving points of space. 

Considering the data fi ~ or part of them as input information, inverse problems are 
solved in order to restore numerical values of components of the vector B Z from experiment. 
The residual 

I , l ,.-., l ~ . 

is computed from these data. 

If A~ >6~ , where 6[ is the error in the input data f~f in the metric of the space 
F, then a deduction can at once be made about the unsatisfactory selection of the approxima- 
tion $~ and the necessity of going over to another structure of the model. 

If AI~&] , then this MM is not excluded from the number of "doubtful" models, how- 
ever, its adequacy must be verified in application to other loading actions g~,i=2,), which 
should include all practical situations of subsequent utilization of the model to a suffi- 
cient degree. For all gl i the residuals 31 i are computed. The model is usually considered 
adequate to the real process if the residual agrees with the errors in the input data as fol- 
lows: 

A~ ~< ~, ~-- i, i .  (7) 

If the residual for certain gz exceeds the error in the input data, a decision is made 
about the correction of the numerical values of the components of the vector gl. The correc- 
tion can be made by using the solution of inverse problems for other data fi~, i=2,1, with a 
subsequent verification of the adequacy b~ means of conditions of the type (7). If it turns 
out here that such quantitative data as satisfy the accuracy required do not exist for the 
vector BZ4 thenmodel is converted to another structure determined by a new operator AZ+~ and 
the procedure described is repeated. And so on until a consistent mathematical model is found 
for the domain under consideration for its practical application. 

Only the loading actions were variated in this analysis, however, the numerical values 
of the components of the vector a can also be variated. 

The procedures elucidated above for parametric and structural identification are the 
modern approach to the development of MM for physical processes. This approach which is 
based on a mathematical description in the system states space and on inverse problem method- 
ology often turns out to be the only one possible for the construction of mathematical mod- 
els of complex nonlinear heat and mass transfer processes. 
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